PLONK: Permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge

发表信息

最早在2017年放在archive上,但2025年3月又有了更新

作者

笔记

zk-SNARK constructions that utilize an updatable universal structured reference string remove one of the main obstacles in deploying zk-SNARKs [GKMMM, Crypto 2018]. The important work of Maller et al. [MBKM, CCS 2019] presented - the first potentially practical zk-SNARK with fully succinct verification for general arithmetic circuits with such an SRS. However, the version of enabling fully succinct verification still requires relatively high proof construction overheads. We present a universal SNARK construction with fully succinct verification, and significantly lower prover running time (roughly 7.5-20 less group exponentiations than [MBKM] in the fully succinct verifier mode depending on circuit structure).

Similarly to [MBKM], we rely on a permutation argument based on Bayer and Groth [Eurocrypt 2012]. However, we focus on “Evaluations on a subgroup rather than coefficients of monomials”; which enables simplifying both the permutation argument and the artihmetization step.

以下是中文翻译:

利用可更新的通用结构化参考字符串(universal structured reference string)的零知识简洁非交互式知识论证(zk-SNARK)构造消除了部署zk-SNARK的主要障碍之一[GKMMM, Crypto 2018]。Maller等人的重要工作[MBKM, CCS 2019]提出了——这是第一个具有这种SRS且可能具有实用价值的、针对通用算术电路具有完全简洁验证的zk-SNARK。

然而,支持完全简洁验证的版本仍然需要相对较高的证明构造开销。我们提出了一个具有完全简洁验证的通用SNARK构造,并且显著降低了证明者运行时间(在完全简洁验证器模式下,根据电路结构的不同,群指数运算比[MBKM]大约减少了7.5-20倍)。

与[MBKM]类似,我们依赖于基于Bayer和Groth[Eurocrypt 2012]的置换论证(permutation argument)。然而,我们关注于”在子群上的求值而非单项式的系数”;这使得我们能够同时简化置换论证和算术化(arithmetization)步骤。