DeepFold: Efficient Multilinear Polynomial Commitment from Reed-Solomon Code and Its Application to Zero-knowledge Proofs
发表信息
- 原文链接暂无
- archive
作者
- Yanpei Guo
- Xuanming Liu
- Kexi Huang
- Wenjie Qu
- Tianyang Tao
- Jiaheng Zhang
笔记
This work presents Deepfold, a novel multilinear polynomial commitment scheme (PCS) based on Reed-Solomon code that offers optimal prover time and a more concise proof size. For the first time, Deepfold adapts the FRI-based multilinear PCS to the list decoding radius setting, requiring significantly fewer query repetitions and thereby achieving a reduction in proof size compared to Basefold (Crypto’24), while preserving its advantages in prover time. Compared with PolyFRIM (USENIX Security’24), Deepfold achieves a improvement in prover time, verifier time, and proof size. Another contribution of this work is a batch evaluation scheme, which enables the FRI-based multilinear PCS to handle polynomials whose size is not a power of two more efficiently.
Our scheme has broad applications in zk-SNARKs, since PCS is a key component in modern zk-SNARK constructions. For example, when replacing the PCS component of Virgo (S&P’20) with Deepfold, our scheme achieves a faster prover time when proving the knowledge of a Merkle tree with 256 leaves, while maintaining the similar proof size. When replacing the PCS component of HyperPlonk (Eurocrypt’23) with Deepfold, our scheme has about faster prover time. Additionally, when applying our arbitrary length input commitment to verifiable matrix multiplications for matrices of size and , which are actual use cases in GPT-2 model, the performance showcases a reduction in prover time compared to previous approaches.
本文提出了Deepfold,这是一种基于里德-所罗门码(Reed-Solomon code)的新型多重线性多项式承诺方案(multilinear polynomial commitment scheme, PCS),它实现了最优的证明者时间并具有更简洁的证明规模。Deepfold首次将基于FRI的多重线性PCS应用于列表解码半径(list decoding radius)设置,显著减少了查询重复次数,从而与Basefold (Crypto’24)相比实现了证明规模减少3倍,同时保持了其在证明者时间方面的优势。与PolyFRIM (USENIX Security’24)相比,Deepfold在证明者时间、验证者时间和证明规模方面都实现了2倍的改进。本工作的另一个贡献是批量评估方案,它使基于FRI的多重线性PCS能够更高效地处理大小不是2的幂次方的多项式。
我们的方案在零知识简洁非交互式论证系统(zk-SNARKs)中有广泛的应用,因为PCS是现代zk-SNARK构造中的关键组件。例如,当用Deepfold替换Virgo (S&P’20)中的PCS组件时,在证明具有256个叶子的默克尔树(Merkle tree)的知识时,我们的方案实现了2.5倍更快的证明者时间,同时保持了类似的证明规模。当用Deepfold替换HyperPlonk (Eurocrypt’23)中的PCS组件时,我们的方案实现了约3.6倍更快的证明者时间。此外,当将我们的任意长度输入承诺应用于大小为和的矩阵的可验证矩阵乘法时(这些是GPT-2模型中的实际应用场景),与之前的方法相比,性能展示了2.4倍的证明者时间减少。