TreePIR: Efficient Private Retrieval of Merkle Proofs via Tree Colorings with Fast Indexing and Zero Storage Overhead
发表信息
- [原文链接暂无]
- arxiv链接
作者
- Quang Cao
- Son Hoang Dau
- Rinaldo Gagiano
- Duy Huynh
- Xun Yi
- Phuc Lu Le
- Quang-Hung Luu
- Emanuele Viterbo
- Yu-Chih Huang
- Jingge Zhu
- others
笔记
A Batch Private Information Retrieval (batch-PIR) scheme allows a client to retrieve multiple data items from a database without revealing them to the storage server(s). Most existing approaches for batch-PIR are based on batch codes, in particular, probabilistic batch codes (PBC) (Angel et al. S&P’18), which incur large storage overheads. In this work, we show that \textit{zero} storage overhead is achievable for tree-shaped databases. In particular, we develop TreePIR, a novel approach tailored made for private retrieval of the set of nodes along an arbitrary root-to-leaf path in a Merkle tree with no storage redundancy. This type of trees has been widely implemented in many real-world systems such as Amazon DynamoDB, Google’s Certificate Transparency, and blockchains. Tree nodes along a root-to-leaf path forms the well-known Merkle proof. TreePIR, which employs a novel tree coloring, outperforms PBC, a fundamental component in state-of-the-art batch-PIR schemes (Angel et al. S&P’18, Mughees-Ren S&P’23, Liu et al. S&P’24), in all metrics, achieving 3× lower total storage and 1.5-2× lower computation and communication costs. Most notably, TreePIR has 8-160× lower setup time and its polylog-complexity indexing algorithm is 19-160× faster than PBC for trees of leaves.
批量私有信息检索(batch Private Information Retrieval, batch-PIR)方案允许客户端从数据库中检索多个数据项,而无需向存储服务器透露这些数据项的内容。目前大多数batch-PIR方案都基于批量编码,特别是概率批量编码(Probabilistic Batch Codes, PBC) (Angel等人 S&P’18),但这些方案会产生较大的存储开销。在本研究中,我们证明对于树状数据库而言,可以实现零存储开销。
具体而言,我们开发了TreePIR,这是一种新颖的方法,专门用于在默克尔树(Merkle tree)中私密检索从根节点到叶节点路径上的所有节点,且无需额外存储冗余。这类树结构已在许多实际系统中得到广泛应用,如亚马逊DynamoDB、谷歌的证书透明度系统和区块链等。从根节点到叶节点路径上的树节点构成了众所周知的默克尔证明(Merkle proof)。
TreePIR采用了一种新颖的树着色方法,在所有指标上都优于PBC(PBC是当前最先进的batch-PIR方案中的基础组件,如Angel等人 S&P’18、Mughees-Ren S&P’23、Liu等人 S&P’24)。具体来说,TreePIR实现了总存储开销降低3倍,计算和通信成本降低1.5-2倍。最显著的是,TreePIR的设置时间降低了8-160倍,其多项式对数复杂度的索引算法在处理具有2^10-2^24个叶节点的树时,比PBC快19-160倍。