BaseFold: Efficient Field-Agnostic Polynomial Commitment Schemes from Foldable Codes

发表信息

作者

笔记

This works introduces , a new field-agnostic Polynomial Commitment Scheme (PCS) for multilinear polynomials that has verifier costs and prover time. An important application of a multilinear PCS is constructing Succinct Non-interactive Arguments (SNARKs) from multilinear polynomial interactive oracle proofs (PIOPs). Furthermore, field-agnosticism is a major boon to SNARK efficiency in applications that require (or benefit from) a certain field choice.

Our inspiration for is the Fast Reed-Solomon Interactive-Oracle Proof of Proximity ( IOPP), which leverages two properties of Reed-Solomon (RS) codes defined over “FFT-friendly” fields: encoding time, and a second property that we call foldability. We first introduce a generalization of the IOPP that works over any foldable linear code in linear time. Second, we construct a new family of linear codes which we call random foldable codes, that are a special type of punctured Reed-Muller codes, and prove tight bounds on their minimum distance. Unlike RS codes, our new codes are foldable and have encoding time over any sufficiently large field. Finally, we construct a new multilinear PCS by carefully interleaving our IOPP with the classical sumcheck protocol, which also gives a new multilinear PCS from .

is 2–3 times faster than prior multilinear PCS constructions from when defined over the same finite field. More significantly, using Hyperplonk (Eurocrypt, 2022) as a multilinear PIOP backend for apples-to-apples comparison, we show that results in a SNARK that has better concrete efficiency across a range of field choices than with any prior multilinear PCS in the literature. Hyperplonk with has a proof size that is more than 10 times smaller than Hyperplonk with Brakedown and its verifier is over 30 times faster for circuits with more than gates. Compared to , Hyperplonk with retains efficiency over any sufficiently large field. For illustration, with we can prove ECDSA signature verification over the secp256k1 curve more than 20 times faster than Hyperplonk with and the verifier is also twice as fast. Proofs of signature verification have many useful applications, including offloading blockchain transactions and enabling anonymous credentials over the web.

这篇论文介绍了 ,一种新的与域无关的多线性多项式承诺方案(Polynomial Commitment Scheme,PCS),其验证者成本为 ,证明者时间为 。多线性PCS的重要应用之一是从多线性多项式交互式oracle证明(Polynomial Interactive Oracle Proofs,PIOPs)构建简洁非交互式论证(Succinct Non-interactive Arguments,SNARKs)。此外,与域无关性在需要(或受益于)特定域选择的应用中对SNARK效率有重大促进作用。

我们对 的灵感来源于快速Reed-Solomon交互式oracle接近证明(Fast Reed-Solomon Interactive-Oracle Proof of Proximity, IOPP),该证明利用了定义在“FFT友好”域上的Reed-Solomon(RS)码的两个特性: 的编码时间,以及我们称之为可折叠性(foldability)的第二个特性。我们首先介绍了一个 IOPP的广义形式,该形式可以在任何可折叠线性码上以线性时间运行。其次,我们构造了一种新的线性码家族,称为随机可折叠码(random foldable codes),这是一种特殊类型的穿孔Reed-Muller码,并证明了它们的最小距离的紧界限。与RS码不同,我们的新码是可折叠的,并且在任何足够大的域上具有 的编码时间。最后,我们通过将我们的IOPP与经典的求和检查协议(sumcheck protocol)巧妙交错,构建了一个新的多线性PCS,这也为 提供了一个新的多线性PCS。

当在相同有限域上定义时, 比之前基于 的多线性PCS构造快2到3倍。更重要的是,使用Hyperplonk(Eurocrypt, 2022)作为多线性PIOP后端进行同类比较,我们展示了 在一系列域选择中实现的SNARK在具体效率上优于文献中任何先前的多线性PCS。使用 的Hyperplonk,其证明大小比使用Brakedown的Hyperplonk小10倍以上,且其验证者在超过 个门电路的情况下速度快30倍以上。与之相比,使用 的Hyperplonk在任何足够大的域上保持效率。举例来说,使用 ,我们可以在secp256k1曲线上比使用 的Hyperplonk快20倍以上地证明ECDSA签名验证,且验证者的速度也快两倍。签名验证的证明具有许多有用的应用,包括卸载区块链交易和在网络上启用匿名凭证。